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1 Operations on D-Finite Series

Note: Today’s lecture is a guest lecture.

1.1 Addition, multiplication, and composition of D-finite series
Last time, we showed that u € K[x] is D-finite iff dim g ,)(span({u, v, u",...})) < oo.

Theorem 1.1. The set D of D-finite u € K[x] is a subalgebra of K[x]. If u,v € D and
a,B € K, then au+ v € D, and uv € D.

Proof. Given w € K[x], let V,, = spany(,y({w,w’,w",...}) € K((x)). Suppose u,v € D,
a,f € K, and let y = au+pv. Theny,y',y", -+ € Vu+V,. Thus, dim(V,) < dim(V,+V,) <
dim(V,,) + dim(V,) < oo.

Next, let u,v € D. Consider ¢ : Vi, ®gs) Vi — K((x)) defined by ¢(y ® z) = yz
for all y € Vi, and z € V,. The product rule implies Vy, € ¢(Vy ®(y) Vo) ; indeed,
(uv)® = Zé':o (;)u(i)v(i_j). Thus, dim(Vyy) < dim(Vy, ®g () Vo) = dim(V,,) dim(V,)) < oo,
so uv € D. ]

Theorem 1.2. Let u € D and v € Kyg[z] (i.e. v € K[z] and v is algebraic over K(z))
with v(0) = 0. Then u(v(x)) € D.

Proof. Let y = u(v(x)). Then ¢y = u/(v(x))v'(z), (v (v(x))) = v (v(x))v(z), etc. In
general, 3 is a linear combination of u(v(x)),u( "(v(x)),... with coefficients in
K[v,v',v",...]. Since v is algebraic over K(z), v € K( or all i (proved last time).
Thus, K[v,v',...] C K(z,v).

Let V' = spang ) ({u(v(z)), v (v(z)),...}) 2 y@ for all i. We want to show that
dimg ) (V) < oo. Since u is D-finite, dimp(y)(spanj () ({u(z), v (z),...})) < oo. By
“specializing = at v,” dimg()(span g, ({u(v(z)), v’ (v(x)),...})) < oo. So we get that
dim () (SPAN  (5,0) ({u(v(2)), v/ (v(2)), . .. })) < co. Then dimg(, ,)(V) < oo, and (since
v is algebraic over K (z)) [K(z,v) : K(z)] < o0, so
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dimg ;) (V) = (dimg(g,)) - [K(2,v) : K(z)] < c0. O
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Example 1.1. We know that ano nlz™, e*, and 1f4x are in D. So we can get that

u= (3 ,>0 nlz™)e?/V1=4 ¢ D This would be difficult to do by hand without the results
we have proved.

1.2 Hadamard products of P-recursive series

Given h : N — K and R(n) € K(n), we want to define Rh : N — K by Rh(n) =
R(n)h(n). But this could be undefined when R(n) = oco. Here is the solution: given
hi,he : N — K, say hy ~ h+ 2 if hy(u) = ho(u) for all n > 0. Call [h], the equivalence
class of h, the germ of h. Define G = {[h| | h : N — K}; this is a K(n) vector space.
Note: if g ~ h, the nh is P-recursive iff g is P-recursive . For each h : N — K, set

G = spang ) ({[R(n)], [h(n + 1], [A(n +2)],... }).
Fact: h is P-recursive iff dimg ) Gn < oc.

Definition 1.1. Givenu = ) f(n)z” and v =) g(n)z", define the Hadamard prod-
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uct uxv = ano f(n)g(n)x".

Theorem 1.3. If f,g : N — K are P-recursive, then so is fg. That is, u,v € D —>
uxv € D.

Proof. 1t is sufficient to show that if [f], [g] are P-recursive (element member of the germ
is recursive), then so is [fg]. Define ¢ : Gy ®(n) Gy — G such that for each 4, j, on simple
tensors, ((f(n + )] @ [g(n + /)]) = [f(n +D]lg(n + )] = [F(n +)g(n + J)]. So the image
of ¢ contains Gy — spany s ({LF(M)g(m], [F(n + g(n+ 1), }). So

dim g () (Gg) < dimp () (Gf ® Gg) = (dim(Gy))(dim(Gy)) < oo.

So fg is P-recursive. O

1.3 Fun facts

Here are some fun facts from Professor Pak’s 2016 206A notes:

Theorem 1.4. Let S C Z% with |S| < co. Let a,, be the number of walks 0 — 0 of length
n on Z¢ with steps in S. Then (ay) is P-recursive.

Theorem 1.5. If a, = |{oc € S, : 02 = 1}|, then a, = ay_1 + (n — V)an_2, s0 (a,) is
P-recursive.

Definition 1.2. Given F =3 f(ni,n2,...,n.)zyt - 2" € Flay, ..., z,], define the di-
agonal, diag(F) € K[t], by

(diag(F))(t) = > f(n,n,...,n)t".



Theorem 1.6 (Furstenberg). Suppose F(s,t) € K[s,t] N K(s,t). Then diag(F') is alge-
braic. If P,Q € Z[xy,...,z,], then diag(P/Q) is D-finite.

The proof of this theorem involves Puiseaux series.

Remark 1.1. The converse is also true. An algebraic single variable power series is the
diagonal of such a multivariable series.
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